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Formulas of MLL

The set of formulas of multiplicative linear logic (MLL) is as usual
defined as the smallest set containing:

• a countable set of positive atoms α1, α2, . . .

• respective negative atoms α⊥
1 , α⊥

2 , . . .,

• and closed under par (

&

) and tensor (⊗).
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Formulas of MLL

The set of formulas of multiplicative linear logic (MLL) is as usual
defined as the smallest set containing:

• a countable set of positive atoms α1, α2, . . .

• respective negative atoms α⊥
1 , α⊥

2 , . . .,

• and closed under par (
&

) and tensor (⊗).

Moreover negation (−)⊥ is defined by

• (α)⊥ := α⊥ and (α⊥)⊥ := α;

• (A

&

B)⊥ := A⊥ ⊗B⊥ and

• (A⊗B)⊥ := A⊥ &

B⊥.
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Formulas of MLL

The set of formulas of multiplicative linear logic (MLL) is as usual
defined as the smallest set containing:

• a countable set of positive atoms α1, α2, . . .

• respective negative atoms α⊥
1 , α⊥

2 , . . .,

• and closed under par (

&

) and tensor (⊗).

Moreover negation (−)⊥ is defined by

• (α)⊥ := α⊥ and (α⊥)⊥ := α;

• (A

&

B)⊥ := A⊥ ⊗B⊥ and

• (A⊗B)⊥ := A⊥ &

B⊥.

Sequents are multisets of formulas
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Rules of MLL

Ax` αi, α⊥
i

` Γ, A, B &

` Γ, A

&

B
` Γ, A ` B,∆ ⊗` Γ, A⊗B,∆

In a proof we can assume the axioms to be different, implying that all
conclusions are different. So the sequents are in fact sets of formulas rather
than multisets.
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Provable sequents of MLL

Lemma 1. Suppose ` Γ is derivable and contains 2n atoms, p pars, t
tensors and consists of c conclusions. Then the following holds: c+p = n+1
and t = n− 1. As a consequence 1 ≤ c ≤ n +1. A provable formula (c = 1)
has p = n pars and t = n− 1 tensors.

Proof:

Let π be a proof of ` Γ consisting of n atomic axioms, p pars, t tensors
and c conclusions.

If π is an axiom the property holds.

If π ends by a

&

-rule two conclusions are replaced by only one, while p
increases by one.

If π ends by a ⊗-rule, we know by induction hypothesis that ci+pi = ni+1
and ti = ni − 1 while n = n1 + n2, c = c1 + c2 − 1, p = p1 + p2 and
t = t1 + t2 + 1. So c + p = c1 + c2 − 1 + p1 + p2 = n1 + 1 + n2 = n + 1
and t = t1 + t2 + 1 = n1 − 1 + n2 = n− 1.
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Provable formulas of MLL

By the lemma, we will find provable formulas only among the so-called
balanced formulas: formulas with 2n atoms (pairwisely positive and nega-
tive), p = n pars and t = n− 1 tensors.

Such a formula is given by a list of the 2n (positive and negative) atoms,
moreover a binary tree with 2n − 1 connectives, n of which are par while
the remaining n− 1 are tensor.
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Some combinatorical notions

• Choosing k out of n

• Catalan numbers

• The number of balanced formulas

• An equivalence relation on balanced formulas

• Expectation
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Choosing k out of n

The number of ways to choose k objects out of a set of n distinct
objects is given by the binomial coefficient(n

k

)
:=

n!

k!(n− k)!
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Catalan numbers

The number of distinct binary trees with k+1 leaves is given by the the
k-th Catalan number

Ck :=
1

k + 1

(2k

k

)

E.g. there are C3 = 5 binary trees with 4 leaves:

((x · x) · x) · x

(x · (x · x)) · x

(x · x) · (x · x)

x · ((x · x) · x)

x · (x · (x · x))
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The number of balanced formulas

A balanced formula is a formula with the 2n atomic subformulas

α1, α
⊥
1 , . . . , αn, α

⊥
n

and with p = n pars and t = n− 1 tensors.

Such a formula is given by a list of the 2n (positive and negative) atoms,
moreover a binary tree with 2n− 1 connectives (2n leaves), n of which are
pars while the remaining n− 1 are tensors. Hence there are(2n− 1

n

)
C2n−1(2n)!

of them.
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An equivalence relation on balanced formulas

Let us call two balanced formulas equivalent iff they differ only by a
name or sign of an atom. To be precise,

φ[ai, a
⊥
i ] ∼ φ[a⊥i , ai]

φ[ai, a
⊥
i , aj, a

⊥
j ] ∼ φ[aj, a

⊥
j , ai, a

⊥
i ]

Then each equivalence class consists of 2nn! formulas. In fact, in the sequel
we will quotient by this equivalence for most of the results.
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The negatively focalized calculus

We will now consider the negatively focalized sequent calculus of MLL,
notation MLLnf.

There are two types of sequents:

• A positive sequent of length c is a set of c final-

&

-free formulas, notation
` A1, . . . Ac.

• A negative sequent of length c is a set of c−1 final-

&

-free formulas and
a distinguished formula A1, notation A⊥

1 ` A2, . . . Ac. The distinguished
formula A1 may contain final-

&

’s.
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Rules of MLLnf

Ax` αi, α⊥
i

` Γ, A1, . . . , Aq &

; q ≥ 1
(

&

(A1, . . . , Aq))
⊥ ` Γ

A⊥ ` Γ B⊥ ` ∆ ⊗` Γ, A⊗B,∆

The

&

-rules stands for q!Cq−1 different rules, depending on the order of the
active formulas in the main formula

&

(A1, . . . , Aq) and its actual

&

-tree.

A positive (resp. negative) proof with c conclusions is by definition a
proof concluding in a positive (resp. negative) sequent of length c.
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Equivalence with MLL

Compared to the rules of MLLsc, in MLLnf we are forced to decompose
the final-

&

’s of the active formulas of a ⊗-rule immediately above it, such
that we get a final-

&

-free sequent again.

This fragment of MLL derives exactly all positive and negative sequents
which are MLL-derivable. Indeed, given an MLL proof of a positive or
negative sequent, we can successively replace any subderivation

` Γ, A

· · ·
...

` Σ, C, D &

` Σ, C

&

D
...

B,∆, C

&

D ⊗` Γ, A⊗B,∆, C

&

D

by ` Γ, A

· · ·
...

` Σ, C, D
...

B,∆, C, D ⊗` Γ, A⊗B,∆, C, D &

` Γ, A⊗B,∆, C

&

D

to obtain an MLLnf-proof with the same conclusions (or see [Andreoli 92]).
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Splitting tensors

Given a derivable positive sequent ` Γ, we call A ⊗ B ∈ Γ a splitting
tensor if there is a derivation ending in the introduction of this ⊗. Every
non-trivial derivable positive sequent has at least one splitting tensor, since
it is necessarily introduced by a ⊗-rule.

Given a derivable negative sequent C⊥ ` Γ, we call A⊗B ∈ Γ a splitting
tensor if there is an MLLsc-derivation of ` C,Γ ending in the introduction
of this ⊗. The distinguished formula C will never be counted as splitting
tensor, although there might be an MLLsc-derivation ending with a ⊗-rule
with main formula C.
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A sequent may have more than one derivation

` α1, α⊥
1 &

α1 ` α1

` α2, α⊥
2 &

α⊥
2 ` α⊥

2 ⊗
` α1, α⊥

1 ⊗ α2, α⊥
2 &

α2 ` α1, α⊥
1 ⊗ α2

` α3, α⊥
3 &

α⊥
3 ` α⊥

3 ⊗
` α1, α⊥

1 ⊗ α2, α⊥
2 ⊗ α3, α⊥

3

` α1, α⊥
1 &

α1 ` α1

` α2, α⊥
2 &

α2 ` α2

` α3, α⊥
3 &

α⊥
3 ` α⊥

3 ⊗
` α2, α⊥

2 ⊗ α3, α⊥
3 &

α⊥
2 ` α⊥

2 ⊗ α3, α⊥
3 ⊗

` α1, α⊥
1 ⊗ α2, α⊥

2 ⊗ α3, α⊥
3
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A tree-algebra to compute the number of proof nets

To compute the number of derivable sequents we have to code the
geometry of the sequent, by which we mean the geometry of the corre-
sponding proof net. We code the splitting tensor information of a proof
net by a labeled tree, called the Splitting Tensor tree (ST-tree).

A labeled tree τ is a tree with edges E and vertices V where to each
vertex v is associated a natural number cv ≥ 0. It represents a component
of a proof net containing cv conclusions none of which are splitting, while
every edge represents a splitting tensor. We denote the set of conclusions
by Γτ , the cardinality of which equals |Γτ | := |E|+

∑
v∈V cv. We write |τ | for

the number of edges |E|. Specifying some of the components (indicated by
an open bullet) we get a so-called specified labeled tree.

Cofin 2000 “Logica Lineare e oltre...” – Università Roma Tre, 11/02/2003 16
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has ST-tree •
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•
0

•
1
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Vector spaces representing proof nets...

Let P+ be the vector space with basic elements labeled trees [τ ]+, and
P− be the vector space with basic elements specified labeled trees [τ ]−. The
element [τ ]+ stands for a general proof net with ST-tree τ , while a [τ ]−

in which only one component v is specified stands for a general proof net
with ST-tree τ , having one conclusion in component v which may contain
final-

&

’s and is to play an active role in the next ⊗-rule.
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...turned into algebras

We turn P− into an algebra by defining an (associative, commutative)
multiplication (denoted by juxtaposition) P− × P− → P− by

[
σ ◦

a ]−[ ◦ b
τ
]−

=
1

|σ|+ 1 + |τ |
[
σ ◦

a−1
◦
b−1

τ
]−

(intuitively corresponding to applying a ⊗-rule to the specified conclusi-
ons and remembering the main formula; but taking into account we will
encounter this proof net |σ|+ 1 + |τ | times);
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(two other maps)

Moreover we define a map π : P− → P+ by [τ ]− 7→ [τ ]+ (where τ is obtai-
ned by forgetting the specified components of τ , whence corresponding to
forgetting the main formula of the ⊗-rule) and ν : P+ → P− by

[τ ]+ 7→
|Γτ |∑
q=1

q!Cq−1

∑
S⊆Γτ
|S|=q

[τS]
−

 ,

corresponding to the

&

-rule, i.e. all the possible

&

-trees we can attach to
a proof net with ST-tree τ . Attaching a q-ary

&

-tree to a specific subset
S of the conclusions results in a contraction of the subtree spanned by
the involved vertices and edges, yielding the contracted specified labeled
tree τS in which the specified component is the contracted point serving as
active component in the ⊗-rule.
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Example

[
•

1
◦
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•

1 ]−[ ◦
4
•

1 ]−
=

1
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•
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��
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•

1

•
1



−

π7→
1

4


•
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1

•
5
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•
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•
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+

ν
([

•
1
•

0
•

1 ]+)
=

(
2
[
◦

2
•

1 ]−
+ 2
[
◦

1
•

0
•

1 ]−)
+

+

(
4
[
◦

1
•

1 ]−
+ 8
[
◦

3 ]−)
+ 48

[
◦

2 ]−
+ 120

[
◦

1 ]−
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Theorem: number of proof nets

Let us call S(n, τ) (resp. T (n, τ)) the number of positive (resp. negative)
proof nets with n different given axioms and ST-tree τ , i.e. the number of
proof nets of type [τ ]+ (resp. [τ ]−).

Theorem 2. Let us define S(n) :=
∑

S(n, τ)[τ ]+ and T(n) :=∑
T (n, τ)[τ ]−. Then the functions S : N → P+ and T : N → P− satisfy

the following recursive definition:

S(1) = [ •
2

]+

S(n) =
n−1∑
n′=1

(n

n′

)
π(T(n′)T(n− n′)) (n > 1)

T(n) = ν(S(n)) (n ≥ 1)
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The number of derivations; an upperbound

In order to compute an upperbound, we may consider a modified version
of the product of two base elements in the ST-algebra, in which we don’t
keep track of the number of times we encounter the corresponding proof
net.

If we don’t keep track of the number of times we encounter a proof
net we arrive at functions counting the number of positive (resp. negati-
ve) derivations, thus providing an upperbound for the number of derivable
suquents.

So let us modify the multiplication of P− into

[
σ ◦

a ]−[ ◦ b
τ
]−

=
[
σ ◦

a−1
◦
b−1

τ
]−

(intuitively corresponding to applying a ⊗-rule to the specified conclusions
and remembering the main formula).

Then the previous theorem holds again for the number of derivations.
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Only the number of conclusions matters

In the previous computation the geometry of the sequent does not play
a role anymore, whence may be forgotten. Replacing each ST-tree by the
number of its conclusions, we obtain the following description of the algebra
and generating functions.

Let P+ and P− be two isomorphic copies of the countably-dimensional
vector space Rω :=

{∑n
i=1 ciei

∣∣ ci ∈ R, n ∈ N
}
. The basic elements of P+ will

be written [i]+ (standing for a general positive proof with i conclusions),
and those of P− will be written [i]− (standing for a general negative proof
with i conclusions). Let us define P(n) :=

∑
c≥1 P (n, c)[c]+ and Q(n) :=∑

c≥1 Q(n, c)[c]−.
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(multiplication)

We turn P− into an algebra by defining an (associative, commutative)
multiplication (denoted by juxtaposition) P− × P− → P− by

[i]−[j]− = [i + j − 1]−

intuitively corresponding to applying a ⊗-rule and remembering the main
formula:

A⊥ ` Γ B⊥ ` ∆
(A⊗B)⊥ ` Γ,∆
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(two other maps)

Moreover we define a linear map π : P− → P+ by [i]− 7→ [i]+, forgetting
the distinguished formula

A⊥ ` Γ
` A,Γ

And finally we define ν : P+ → P− by

[i]+ 7→
i∑

q=1

(i

q

)
q!Cq−1[i− q + 1]−

corresponding to the

&

-rule, i.e. all the possible

&

-trees we can attach to
a positive sequent of length i.
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Theorem: number of derivations

Theorem 3. The functions P : N → P+ and Q : N → P− satisfy the
following recursive definition:

P(1) = [2]+

P(n) =
n−1∑
n′=1

(n

n′

)
π(Q(n′)Q(n− n′)) (n > 1)

Q(n) = ν(P(n)) (n ≥ 1)
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Explicit formula for the coefficients

Theorem 4.

P (1,1) = 0

P (1,2) = 1

P (n, c) =
n−1∑
n′=1

(n

n′

) c−1∑
c′=0

n′−((n+1)−c)≤c′≤n′

Q(n′,1 + c′)Q(n− n′,1 + ((c− 1)− c′))

(n > 1; 1 ≤ c ≤ n + 1)

Q(n, c) =

1+((n+1)−c)∑
q=1

(q + (c− 1)

q

)
q!Cq−1P (n, q + (c− 1))

(n ≥ 1; 1 ≤ c ≤ n + 1)
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Results

number of provable formulas number of MLLnf-derivations number of balanced formulas

n T (n,1)/(2nn!) Q(n,1)/(2nn!)
(2n−1

n
)
C2n−1(2n)!/(2nn!)

1 1 1 1
2 17 17 45
3 882 1 174 6 300
4 82 725 174 213 1 576 575
5 11 556 590 43 508 186 578 918 340
6 2,173 613 962 16,093 558 826 282,319 177 140
7 517,553 880 484 8 162,702 679 852 172 272,314 214 000
8 149 714,681 114 349 5 394 878,462 002 605 126 458 645,652 714 375
9 51 094 054,734 001 494 4,482 152 731,426 496 050 108,604 558 347,968 182 500

10 20,126 763 226,141 651 806 4 558,136 970 068,451 778 302 106 888,606 326 070,285 216 500
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A heuristic lowerbound based on the number of dervs

Suppose we know the function T (n, c, s) of MLLnf-derivable negative se-
quents of length c with n axioms and with s ≥ 0 splitting tensors among the
non-distinguished c − 1 final-

&

-free conclusions. Then the number S(n, c)
of derivable positive sequents of length c on n axioms would be

S(1,1) = 0

S(1,2) = 1

S(n, c) =
n−1∑
n′=1

(n

n′

)∑
c′≥0

∑
s1≥0

∑
s2≥0

T (n′,1 + c′, s1)T (n− n′, c− c′, s2)

s1 + 1 + s2

(n > 1; 1 ≤ c ≤ n + 1)

which is similar to the expression for P (n, c) except for the fact that for
each pair (s1, s2) we divide the summand by s = s1 + 1 + s2 in order to
correct for sequents counted several times.
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Expectation

Let D be a non-empty finite set (called domain) and X a real-valued
function on D. The expectation of X is given by

EX :=
1

|D|

∑
d∈D

X(d) =
1

|D|

∑
x

nxx

where nx is the frequency of the value x:

nx := | {d ∈ D | X(d) = x} | = |X−1({x})|

The operation E is linear (E(aX + bY ) = aEX + bEY ) but E(XY ) =
(EX)(EY ) in general does not hold; the left-hand-side may be either less
or greater than the right-hand-side.

E.g. if D = {a, b}; X(a) = 0; X(b) = 1; Y = 1 − X then E(XY ) = 0
while EXEY = (1

2
)2. Also, E(XX) = 1

2
while EXEX = (1

2
)2.
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Lemma

Lemma 5. Suppose X is positive. Then

E
(

1

X

)
≥

1

EX
.

We will use

Let z > 0, then we can take its root. As for every square, (
√

z−
1
√

z
)2 ≥

0, i.e. z − 2
√

z
1
√

z
+

1

z
≥ 0, and we conclude that z +

1

z
≥ 2.
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Proof

E
(

1

X

)
EX =

(
1

|D|

∑
x

nx
1

x

) 1

|D|

∑
y

nyy

 =
1

|D|2
∑
x,y

nxny
y

x
=

=
1

|D|2

∑
x<y

nxny

(
y

x
+

x

y

)
+
∑
x=y

nxny
y

x

 ≥

≥
1

|D|2

∑
x<y

2nxny +
∑
x=y

n2
x

 =

=
1

|D|2

(∑
x

nx

)∑
y

ny

 = 1

where we used the fact that for positive y and x it holds that y
x
+ x

y
≥ 2.
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The expected number of splitting tensors

However, for each splitting tensor we could count the number of cases
in which this specific tensor remains splitting after applying a

&

-rule (the
attaching of a

&

-tree); an idea which we will explore now.

We can rewrite the expression for S(n, c) (the number of derivable se-
quents of length c on n axioms) as follows:

S(1,1) = 0

S(1,2) = 1

S(n, c) =
n−1∑
n′=1

(n

n′

)∑
c′≥0

∑
s1≥0

∑
s2≥0

T (n′,1 + c′, s1)T (n− n′, c− c′, s2)

s1 + 1 + s2
=

=
n−1∑
n′=1

(n

n′

)∑
c′≥0

T (n′,1 + c′)T (n− n′, c− c′)E
(

1

X(n′,1 + c′) + 1 + X(n− n′, c− c′)

)
(n > 1; 1 ≤ c ≤ n + 1)
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(definition X(n, c))

where the integer-valued function X(n, c) : D(n, c) → N is the number
of splitting tensors; a function on the set D(n, c) of derivable sequents of
length c with n axioms and one distinguished formula (to play an active
role in ⊗ and allowed to have final-

&

’s) that counts the number of splitting
tensors among the remaining c − 1 final-

&

-free conclusions (0 ≤ X(n, c) ≤
c− 1). Observe that T (n, c) := |D(n, c)| =

∑
s T (n, c, s) satisfies

T (n, c) =
∑
q≥1

(q + (c− 1)

q

)
q!Cq−1S(n, q + (c− 1))

(cf. the formula for Q(n, c)).
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Probability that tensor remains splitting

Let us consider one summand(c

q

)
q!Cq−1S(n, c)

of the expression for T (n, c̃) =
∑

q≥1

(
q+(c̃−1)

q

)
q!Cq−1S(n, q + (c̃ − 1)) (so c =

q + (c̃− 1)).

` ∆,Σ &

(

&

(Σ))⊥ ` ∆
` Σ′,∆′ &

(

&

(Σ′))⊥ ` ∆′
⊗

` ∆,

&

(Σ)⊗

&

(Σ′),∆′
Id` Γ,Π &

(

&

(Π))⊥ ` Γ
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Attaching a

&

-tree

Given a non-trivial proof π with |Γ,Π| = c final-

&

-free conclusions, the
final ⊗-rule defines a partition of the context conclusions in |∆| = c′ and
|∆′| = (c − 1) − c′ conclusions. Attaching a

&

-tree with q leaves (

&

(Π))
results in a sequent with c̃ := c − q + 1 conclusions (so c = q + (c̃ − 1))
where this ⊗ is still splitting iff it is completely applied within ∆ or ∆′, i.e.

in
((

c′

q

)
+
(
(c−1)−c′

q

))
q!Cq−1 of the

(
c
q

)
q!Cq−1 cases.
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Expected number of splitting tensors given q

As said, in the formula for P (n, c) we consider every sequent s times,
viz. once for every splitting tensor. Hence the expected number of splitting
tensors E(n, c, q) among the

(
c
q

)
q!Cq−1S(n, c) derivable sequents on n axioms

and with c̃ conclusions, one of which being a q-ary

&

-tree which is to play
an active role in the next ⊗-rule, is given by

E(n, c, q) :=
1

S(n, c)

n−1∑
n′=1

(n

n′

)∑
c′≥0

T (n′,1 + c′)T (n− n′, c− c′)

(
c′

q

)
+
(
(c−1)−c′

q

)(
c
q

)
in which, for a given q, every summand is multiplied by

(c′
q)+((c−1)−c′

q )
(c

q)
.
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Expected number of splitting tensors

This in turn can be applied to the above formula for T (n, c) to get the
expected number of splitting tensors EX(n, c) in each of the branches of
the ⊗′-rule.

EX(n, c) =
1

T (n, c)

∑
q≥1

(q + (c− 1)

q

)
q!Cq−1S(n, q + (c− 1))E(n, q + (c− 1), q) =

=
1

T (n, c)

∑
q≥1

q!Cq−1

n−1∑
n′=1

(n

n′

)∑
c′≥0

T (n′,1 + c′)T (n− n′, q + (c− 1)− c′)
((c′

q

)
+
((q+(c−1)−1)−c′

q

))
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The final step

We found a perfect expression for EX(n, c), but the inductive formula

for S(n, c) depends on E
(

1
X(n′,1+c′)+1+X(n−n′,c−c′)

)
. In fact, by E

(
1
X

)
≥ 1

EX
we

know that for n > 1,1 ≤ c ≤ n + 1:

S(n, c) =
n−1∑
n′=1

(n

n′

)∑
c′≥0

T (n′,1 + c′)T (n− n′, c− c′)E
(

1

X(n′,1 + c′) + 1 + X(n− n′, c− c′)

)
≥

≥
n−1∑
n′=1

(n

n′

)∑
c′≥0

T (n′,1 + c′)T (n− n′, c− c′)
1

E (X(n′,1 + c′) + 1 + X(n− n′, c− c′))
=

=
n−1∑
n′=1

(n

n′

)∑
c′≥0

T (n′,1 + c′)T (n− n′, c− c′)

EX(n′,1 + c′) + 1 + EX(n− n′, c− c′)
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Heuristic approximation

This leads to the following heuristic approximations S′, F ′ and T ′ for S,
EX respectively T , defined by an easy recursion:

S′(1,1) = 0

S′(1,2) = 1

S′(n, c) =
n−1∑
n′=1

(n

n′

)∑
c′≥0

T ′(n′,1 + c′)T ′(n− n′, c− c′)
F ′(n′,1 + c′) + 1 + F ′(n− n′, c− c′)

(n > 1; 1 ≤ c ≤ n + 1)

T ′(n, c) =
∑
q≥1

(q + (c− 1)

q

)
q!Cq−1S′(n, q + (c− 1))

(n ≥ 1; 1 ≤ c ≤ n + 1)

F ′(n, c) =
1

T ′(n, c)

∑
q≥1

q!Cq−1

n−1∑
n′=1

(n

n′

)∑
c′≥0

T ′(n′,1 + c′)T ′(n− n′, q + (c− 1)− c′)
((c′

q

)
+
((q+(c−1)−1)−c′

q

))
(n ≥ 1; 1 ≤ c ≤ n + 1)
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Results

number of provable formulas heuristic approximation number of MLLnf-derivations
n T (n,1)/(2nn!) T ′(n,1)/(2nn!) Q(n,1)/(2nn!)

1 1 1.0 1
2 17 17.0 17
3 882 810.5 1,174
4 82,725 67,180.8 174,213
5 11,556,590 8,097,633.2 43,508,186
6 2;173,613,962 1;292,177,393.4 16;093,558,826
7 517;553,880,484 257;683,716,149.8 8,162;702,679,852
8 149,714;681,114,349 61,774;586,215,171.7 5,394,878;462,002,605
9 51,094,054;734,001,494 17,316,387;694,269,184.1 4;482,152,731;426,496,050

10 20;126,763,226;141,651,806 5;559,590,039;485,795,1xx.x 4,558;136,970,068;451,778,302
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Conclusion and remarks

• The heuristic lowerbound yields an efficient and accurate approximation
to the exact number of provable formulas, which is unfeasible for Marco’s
laptop when n > 10;

• The expectation formula provides the technical point used to overco-
me the difficult question on how splitting tensors influence the possible
structures

• It seems mandatory to use the geometric structure, in order to com-
pute the number of proof nets, since we succeded into giving up the
information coming with the ST-algebra, only in the case of derivations;

• In all the different calculi we presented here, weakening can be compatibly
included with our method; in particular, when considering the completely
focalized calculus we get close to ludics (counting can be yet another,
indirect, motivation for focalized calculi);
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• The fragment we didn’t considered at all, is the calculus with additi-
ve connectives, analog results for MALL seem to be very hard to be
obtained;

• A primary goal for our investigation is to compare the combinatorial
properties of syntax with respect to combinarial properties of semantics:
a future direction of investigation will be to consider similar questions in
denotational semantics (coherence spaces);

• Probabilistic correctness criterion...
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